I M.Tech - I Semester – Regular Examinations - MARCH - 2023

RAPID PROTOTYPING (MACHINE DESIGN)

Duration: 3 hours	Max. Marks: 60			
Note: 1. This paper contains 4 questions from 4 units of Syllabus. Each unit				
carries 15 marks and have an internal choice of Questions.				
2. All parts of Question must be answered in one place.				
BL – Blooms Level	CO – Course Outcome			

			BL	CO	Max.
					Marks
	UNIT-I				
1	a)	Despite the increase in relative complexity	L3	CO1	8 M
		of the shape and form of products, project		CO2	
		times have been kept relatively shorter.			
		Why?			
	b)	Discuss the evolution of RP system	L2	CO1	7 M
		indicating the history and their growth rate		CO2	
		in the industrial sector.			
	OR				
2	a)	Describe the five steps involved in a general	L2	CO1	8 M
		RP process chain. Which steps do you think		CO2	
		are likely to be iterated?			
	b) What are Fabrication processes? Explain	What are Estrication processes? Evaluin	L3	CO1	7 M
		what are Fabrication processes? Explain.		CO2	
	1	1		1	

		UNIT-II			
3	a)	Explain the principle process and advantages and disadvantages and applications involved in SLA.	L3	CO2	10 M
	b)	As opposed to many of the liquid-based RP systems which uses photosensitive polymer, water is used in the Rapid Freeze Prototyping (RFP). What are the pros and cons of using water?	L2	CO2	5 M
		OR			
4	a)	Explain the principle, process, working, advantages & disadvantages and applications involved in Cubital's Solid Ground Curing (SGC).	L3	CO2	10 M
	b)		L2	CO2	5 M
		UNIT-III			
5	a)	Explain various process parameters of FDM.	L3	CO3	7 M
	b)	Describe the critical factors that will influence the performance and functions of 3D Systems' MJM, What are the advantages and disadvantages of the system?	L2	CO3	8 M
	1	OR		ıI	
6	a)	Explain the process of SDM. What are the advantages and disadvantages and applications of the system?	L3	CO3	7 M

	b)	Explain the principle, process, working,	L2	CO3	8 M
	0)	advantages & disadvantages and			0 1/1
		applications involved in MJM ?			
		UNIT-IV			
7	a)	Explain the principle, process, working,	L2	CO4	10 M
		advantages & disadvantages and			
		applications involved in SLS?			
	b)	How would you differentiate between the	L3	CO4	5 M
		following types of Rapid tooling processes:			
		i) Direct soft tooling			
		ii) Indirect soft tooling.			
	OR				
8	a)	Discuss the advantages and disadvantages	L2	CO4	8 M
		of powder-based RP systems compared			
		with: i) Liquid-based RP systems,			
		ii) Solid-based RP systems.			
	b)	Using a sketch to illustrate your answer,	L3	CO4	7 M
		describe the Laser Engineered Net Shaping			
		process and principle.			